Properties of metals

- All metals share common properties
 - excellent electrical conductors
 - excellent thermal conductors
 - shiny when polished
- All due to the free electrons of the metallic bond

Outline

- Classical (Drude) theory of metals
 - successes and limitations of the classical model
- Sommerfeld theory of metals
 - quantum statistics and semi-classical model

Metals in the periodic table
Electron density

- We need to know how many electrons \(n \) we have per volume (\(n = \text{el/cm}^3 \)) in a metal
 - we have \(Z \) electrons per atom (valence electrons el/atom)
 - we have \(N \) atoms per mol (Avogadro number 6.023\times10^{23} \text{ atoms/mol})
 - we have \(A \) grams per mol (atomic weight g/mol)
 - we have \(\rho_\text{el} \) grams per unit volume (mass density g/cm^3)

\[
\begin{align*}
Z \cdot N & = \left(\frac{\text{el at at mol}}{\text{mol}} \right) \left(\frac{1}{\text{mol}} \right) \\
\rho_\text{el} & = \left(\frac{\text{g at mol}}{\text{mol}} \right) \left(\frac{1}{\text{g}} \right) \\
\frac{n}{N} & = \left(\frac{\text{el}}{\text{cm}^3} \right) \left(\frac{1}{\text{el}} \right)
\end{align*}
\]

- We define the effective volume per electron

\[
V = \frac{1}{n}
\]

- and an effective radius \(r_e \)

\[
\frac{4\pi r_e^3}{3} = \frac{1}{n} \quad \Rightarrow \quad r_e = \left(\frac{3}{4\pi n} \right)^{1/3}
\]

Bohr radius \(a_0 = h^2/e^2 = 0.529 \times 10^{-10} \text{ cm} \)

Electron motion in the Drude model

- In the Drude model the electron scatter form the ionic cores
 - however, from what we know now, is this picture correct?

- Not really, we now know that:
 - electrons do not scatter from the ionic cores
 - they only scatter on impurities, defects, phonons, etc

- In a more general picture, we define the relaxation time \(\tau \)
 - \(\tau \) is the average time between scattering events
 - \(\tau \) depends on temperature, defects, impurities, etc.
 - we will use \(\tau \) as a parameter
 - typical order of magnitude for \(\tau \) 10^{-14} \text{ sec}
DC electrical conductivity of a metal

- We start with Ohm’s law: \(V = R \cdot I \)
- \(R = \frac{\rho \cdot L}{A} \)
- \(E = \rho \cdot J \)
- \(I = J \cdot A \)

 \[E = \rho \cdot J \]

- the current density depends on the electron flow: \(J = -ne\nu \) (\(\nu \) the average velocity)
- the acceleration from the field: \(a = -eE/m \)
- the average velocity is acceleration times average time between collisions: \(\nu = -eE\tau/m \)
- and so the current density: \(J = \left(\frac{ne^2\tau}{m} \right) E \)

- **Definition of electric conductivity**

 \[\sigma = \frac{1}{\rho} \cdot \frac{ne^2\tau}{m} \quad (1/\text{cm} \cdot \text{sec} \text{ cm}) \]

- **Electron relaxation length**

 \[l = \nu_0\tau \]

 - \(\nu_0 \) average electronic speed
 - but what do we use for \(\nu_0 \)?

 - **Classical statistical mechanics, equipartition of energy:**
 - at thermal equilibrium in temperature \(T \), each degree of freedom carries energy of \(\frac{1}{2}k_BT \)
 - a free electron has 3 degrees of freedom (motion in the 3D space)
 - so total thermal energy \(\frac{1}{2}m\nu_0^2 = \frac{3}{2}k_BT \)
 - the Boltzmann constant \(k_B = 1.38 \times 10^{-23} \text{ J/K} \)
 - for \(T = 300 \text{ K} \) and \(m=9.11\times10^{-31} \text{ kg} \), we find \(\nu_0 = \sqrt{3k_BT/2m} \approx 10^7 \text{ cm/s} \)
 - and relaxation length
 \[l = \nu_0\tau \approx 10^{17} \text{ cm} \times 10^{-14} \text{ s} = 1 \text{ Å} \]

- **AC electrical conductivity of a metal**

 \[\sigma = \frac{1}{\rho} \cdot \frac{ne^2\tau}{m} \]

 - the electric field, and thus the driving force, oscillate with time
 - the average electron momentum at time \(t \): \(\mathbf{p}(t) = m\mathbf{v}(t) \)
 - scattering events occur on the average every \(\tau \) seconds
 - after a scattering event, the electron emerges with random velocity
 - to first order, at time \(t \) the momentum will change by
 \[\frac{d\mathbf{p}(t)}{dt} = -e\mathbf{E}(t) \]
 - due to electron scattering
 - due to the electric force
 - so the evolution equation
 \[\frac{d\mathbf{p}(t)}{dt} = \frac{\mathbf{p}(t)}{\tau} - e\mathbf{E}(t) \]

 - **Time dependent solution**

 - for harmonic fields \(\mathbf{E}(t) = \Re(\mathbf{E}(\omega)e^{-i\omega t}) \)
 - \(\mathbf{p}(t) = \Re(\mathbf{p}(\omega)e^{-i\omega t}) \)
 - evolution equation becomes
 \[-i\omega\mathbf{p}(\omega) = -\mathbf{p}(\omega)/\tau - e\mathbf{E}(\omega) \]
 - \(\mathbf{p}(\omega) = \frac{-e\mathbf{E}(\omega)\tau}{1-i\omega\tau} \)
 - \(\mathbf{J}(\omega) = -ne\mathbf{p}(\omega)/m \)
 - \(\mathbf{J}(\omega) = \frac{(ne^2\tau/m)}{1-i\omega\tau} \mathbf{E}(\omega) \sigma(\omega) = \sigma(0) \frac{1}{1-i\omega\tau} \)
Thermal conductivity of a metal

- Electron motion and scattering cause conduction of heat
 - After any scattering event, an electron emerges with kinetic energy $e(T_{end})$
 - $n/2$ electrons move from left to right with kinetic energy $e(T_{end})$
 - $n/2$ electrons move from right to left with kinetic energy $e(T_{start})$
 - The rate of electrons arriving at x is $nU/2$
 - So the total heat flux $j^T = \frac{1}{2} nU (e(T_{end}) - e(T_{start}))$
 - For ϵ small compared to the temperature variation scale $e(T_{end}) - e(T_{start}) \approx -\frac{\partial e}{\partial T} \frac{dT}{dx} 2\nu \tau$
 - And so $j^T = -nU \nu \frac{\partial e}{\partial T} \frac{dT}{dx}$

Wiedemann-Franz law

- The ratio between thermal and electrical conductivities in metals is linear to temperature
 - Thermal conductivity $\kappa = \frac{3 nk^2 T}{2m}$
 - Electrical conductivity $\sigma = \frac{n \epsilon^2 T}{m}$
 - Lorentz number (independent of T)
 $\frac{\kappa}{\sigma T} = \frac{1}{2} \frac{k_B}{e^2} = 1.11 \times 10^{-8} \text{ Wcm/K}^2$
 - Excellent agreement with experiment!
 - But are we finished??

- What we know from experiment:
 - Average velocities are actually much larger (by ~10)
 - Average heat capacity is actually much smaller (by ~100)
- Once again, we should not use classical statistics!!

Classical electron statistics

- Classical: Maxwell-Boltzmann distribution
 - The probability to find an electron with velocity ν when the temperature is T
 \[
 f_{MB}(\nu) = C_{MB} e^{-\frac{1}{2} \frac{m\nu^2}{k_B T}}
 \]
 - In our simple metal, electrons have only kinetic energy
 - Thermal energy at room temperature
 - The distribution satisfies the charge conservation
 \[
 \int_{-\infty}^{\infty} f_{MB}(\nu) d\nu = n
 \]
 - How do we treat $d\nu$?
 - It is a differential over speed and solid angle. In isotropic case (all angles are the same):
 \[
 d\nu = 4\pi \nu^2 d\nu
 \]
 - So the number of electrons
 \[
 4\pi \int_{-\infty}^{\infty} f_{MB}(\nu) \nu^2 d\nu = n
 \]
Quantum electron statistics (Sommerfeld theory of metals)

- Quantum: Fermi-Dirac distribution
 - the probability to find an electron with velocity \(v \) when the temperature is \(T \)
 \[
 f_{FD}(v) = C_{FD} \frac{1}{e^{\frac{\mu}{k_B T}} + 1}
 \]
 \[\mu = \frac{1}{2} m v^2\]
 in our simple metal, electrons have only kinetic energy
 \[C_{FD} = \frac{(m/\hbar)^3}{4\pi^2}\]
 normalization constant

- the total number of electrons is found
 \[
 4\pi \int f_{FD}(v) v^2 dV = n
 \]
 when \(n \) is known, we use this to find the chemical potential \(\mu \)

- The Fermi-Dirac distribution comes from the Pauli exclusion principle:
 - two electrons of opposite spin can occupy one level
 - no two electrons can have identical states

Ground state of the free electron gas

- But what are the states to be filled by the electron gas?
 - is there an equation satisfied by the electrons?
 - Schrödinger equation:
 \[
 -\frac{\hbar^2}{2m} \nabla^2 \psi(r) = \epsilon \psi(r)
 \]
 Laplacian
 as any wave solution, we need a boundary condition
 - assume a hypothetical cube of side \(L \), and volume \(V = L^3 \)
 - the electron wavefunctions are periodic at the cube edges (the cube periodically repeats itself)
 \[
 \psi(x + L, y, z) = \psi(x, y, z)
 \]
 \[
 \psi(x, y + L, z) = \psi(x, y, z)
 \]
 \[
 \psi(x, y, z + L) = \psi(x, y, z)
 \]

 solution
 \[
 \psi_k(r) = \frac{1}{\sqrt{V}} e^{i\mathbf{k} \cdot \mathbf{r}}
 \]
 normalization condition
 \[
 \int |\psi(r)|^2 dV = 1
 \]

- The electron gas properties should be independent of the choice of \(L \)
- Sure, but what is \(\mathbf{k} \)?

Comparison of electron statistics

- The quantum distribution is very different from the classical due to Pauli exclusion

\[
\begin{align*}
T = 0 \text{ K} \quad & f_{FD}(v) = C_{FD} e^{\frac{\mu}{k_B T}} \\
T = 300 \text{ K} \quad & f_{FD}(v) = C_{FD} e^{\frac{\mu}{k_B T}} \\
T = 1000 \text{ K} \quad & f_{FD}(v) = C_{FD} e^{\frac{\mu}{k_B T}}
\end{align*}
\]

Ground state of the free electron gas

- The proper \(k \) values are found from the boundary conditions
 \[
 \psi(x + L, y, z) = \psi(x, y, z)
 \]
 \[
 \psi(x, y + L, z) = \psi(x, y, z)
 \]
 \[
 \psi(x, y, z + L) = \psi(x, y, z)
 \]
 - the exponent is a vector product
 \[
 \mathbf{k} \cdot \mathbf{r} = k_x x + k_y y + k_z z
 \]
 - and so the boundary condition becomes
 \[
 e^{i(k_x x + k_y y + k_z z)} = e^{i(k_x x') e^{i(k_y y') e^{i(k_z z')}}}
 \]
 \[
 e^{i(k_x x + k_y y + k_z z)} = e^{i(k_x x') e^{i(k_y y') e^{i(k_z z')}}}
 \]
 \[
 e^{i(k_x x + k_y y + k_z z)} = e^{i(k_x x') e^{i(k_y y') e^{i(k_z z')}}}
 \]

 with solution
 \[
 e^{i\mathbf{k} \cdot \mathbf{r}} = 1 \Rightarrow k_x L = n_x 2\pi \Rightarrow k_x = n_x (2\pi / L)
 \]
 \[
 e^{i\mathbf{k} \cdot \mathbf{r}} = 1 \Rightarrow k_y L = n_y 2\pi \Rightarrow k_y = n_y (2\pi / L)
 \]
 \[
 e^{i\mathbf{k} \cdot \mathbf{r}} = 1 \Rightarrow k_z L = n_z 2\pi \Rightarrow k_z = n_z (2\pi / L)
 \]

- The different wavefunctions correspond to different combinations of \(n_x, n_y, n_z \)
Ground state of the free electron gas

- We populate the ground state
 - two electrons (spin up and down) per energy level

 \[(n_x, n_y, n_z) = (0,0,0) \]
 \[(n_x, n_y, n_z) = (1,0,0) \]
 \[(n_x, n_y, n_z) = (-1,0,0) \]
 \[(n_x, n_y, n_z) = (0,1,0) \]
 \[(n_x, n_y, n_z) = (0,-1,0) \]
 \[(n_x, n_y, n_z) = (1,1,0) \]
 \[\cdots \]

- the periodicity of the k-point lattice is \(2\pi/L \)
- number of k-points is equal to number of electrons \(-10^{22} \text{e/cm}^3 \)

- The number of electrons determines the highest energy
 - highest k-point: Fermi wavevector \(k_F \)
 - highest energy: Fermi energy \(E_F = \frac{\hbar^2 k_F^2}{2m} \)
 - highest velocity: Fermi velocity \(v_F = \frac{\hbar k_F}{m} \)

Number of states for the free electron gas

- Number of k-points that fit within the Fermi sphere (in k-space)
 - volume within Fermi surface \(\frac{4\pi k_F^3}{3} \)
 - volume occupied by each k-point \(\left(\frac{2\pi}{L} \right)^3 \)
 - number of points (each k-point \(\times 2 \) due to spin)
 \[N = 2 \frac{4\pi k_F^3}{3} \frac{L^3}{8\pi^2} \Rightarrow \frac{N}{V} = n = \frac{k_F^3}{3\pi^2} \]

- But \(n \) is known for each metal
 \[n = \frac{\rho_s \cdot Z \cdot N_A}{A} \] and \[\frac{4\pi n^2}{3} = \frac{1}{n} \Rightarrow r_s = \left(\frac{3}{4\pi} \right)^{1/3} \]

 so we define

 \[k_F = \frac{3.63}{r_s/a_0}, \quad \varepsilon_F = \frac{50.1}{(r_s/a_0)^2} \text{eV}, \quad \nu_F = 4.20 \frac{r_s}{a_0} \times 10^6 \text{cm/s} \]

Fermi energies etc for various metals

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>(r_s/\text{a}_0)</th>
<th>(E_F)</th>
<th>(\nu_F)</th>
<th>(k_F)</th>
<th>(\varepsilon_F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>3.25</td>
<td>4.74eV</td>
<td>5.51</td>
<td>1.12</td>
<td>1.29</td>
</tr>
<tr>
<td>Na</td>
<td>3.83</td>
<td>3.36eV</td>
<td>3.77</td>
<td>0.92</td>
<td>0.97</td>
</tr>
<tr>
<td>K</td>
<td>4.66</td>
<td>2.12eV</td>
<td>2.46</td>
<td>0.76</td>
<td>0.78</td>
</tr>
<tr>
<td>Rb</td>
<td>5.20</td>
<td>1.85eV</td>
<td>2.13</td>
<td>0.70</td>
<td>0.81</td>
</tr>
<tr>
<td>Cs</td>
<td>5.62</td>
<td>1.59eV</td>
<td>1.84</td>
<td>0.65</td>
<td>0.75</td>
</tr>
<tr>
<td>Cu</td>
<td>2.67</td>
<td>7.00eV</td>
<td>8.16</td>
<td>1.36</td>
<td>1.57</td>
</tr>
<tr>
<td>Ag</td>
<td>3.02</td>
<td>5.49eV</td>
<td>6.38</td>
<td>1.20</td>
<td>1.39</td>
</tr>
<tr>
<td>Au</td>
<td>3.01</td>
<td>5.53eV</td>
<td>6.42</td>
<td>1.23</td>
<td>1.40</td>
</tr>
<tr>
<td>Be</td>
<td>1.07</td>
<td>14.3eV</td>
<td>16.6</td>
<td>1.94</td>
<td>2.25</td>
</tr>
<tr>
<td>Mg</td>
<td>2.66</td>
<td>7.08eV</td>
<td>8.23</td>
<td>1.36</td>
<td>1.58</td>
</tr>
<tr>
<td>Ca</td>
<td>3.27</td>
<td>4.69eV</td>
<td>5.84</td>
<td>1.14</td>
<td>1.28</td>
</tr>
<tr>
<td>Sr</td>
<td>3.57</td>
<td>3.93eV</td>
<td>4.57</td>
<td>1.02</td>
<td>1.18</td>
</tr>
<tr>
<td>Ba</td>
<td>3.71</td>
<td>3.64eV</td>
<td>4.23</td>
<td>0.98</td>
<td>1.13</td>
</tr>
<tr>
<td>Nb</td>
<td>3.07</td>
<td>5.32eV</td>
<td>6.18</td>
<td>1.18</td>
<td>1.37</td>
</tr>
<tr>
<td>Ru</td>
<td>7.13</td>
<td>11.1eV</td>
<td>13.60</td>
<td>1.91</td>
<td>1.66</td>
</tr>
<tr>
<td>Mn</td>
<td>2.14</td>
<td>10.9eV</td>
<td>12.7</td>
<td>1.70</td>
<td>1.96</td>
</tr>
<tr>
<td>Zn</td>
<td>2.30</td>
<td>9.47eV</td>
<td>11.0</td>
<td>1.58</td>
<td>1.83</td>
</tr>
<tr>
<td>Cd</td>
<td>2.59</td>
<td>7.47eV</td>
<td>8.66</td>
<td>1.40</td>
<td>1.62</td>
</tr>
<tr>
<td>Hg</td>
<td>2.65</td>
<td>7.13eV</td>
<td>8.29</td>
<td>1.37</td>
<td>1.58</td>
</tr>
<tr>
<td>Al</td>
<td>2.07</td>
<td>11.3eV</td>
<td>13.6</td>
<td>1.75</td>
<td>2.03</td>
</tr>
<tr>
<td>Ca</td>
<td>2.19</td>
<td>10.4eV</td>
<td>12.1</td>
<td>1.66</td>
<td>1.92</td>
</tr>
<tr>
<td>In</td>
<td>2.41</td>
<td>8.63eV</td>
<td>10.6</td>
<td>1.51</td>
<td>1.74</td>
</tr>
<tr>
<td>Ti</td>
<td>2.48</td>
<td>8.15eV</td>
<td>9.46</td>
<td>1.46</td>
<td>1.69</td>
</tr>
<tr>
<td>Sn</td>
<td>2.22</td>
<td>10.2eV</td>
<td>11.8</td>
<td>1.64</td>
<td>1.90</td>
</tr>
<tr>
<td>Pb</td>
<td>2.30</td>
<td>9.47eV</td>
<td>11.6</td>
<td>1.58</td>
<td>1.83</td>
</tr>
<tr>
<td>Bi</td>
<td>2.25</td>
<td>9.90eV</td>
<td>11.5</td>
<td>1.61</td>
<td>1.87</td>
</tr>
<tr>
<td>Sb</td>
<td>2.14</td>
<td>10.9eV</td>
<td>12.7</td>
<td>1.70</td>
<td>1.96</td>
</tr>
</tbody>
</table>

Summing over the electron states

- The number of states
 \[N = \sum_k \frac{f(k)}{\varepsilon^3} = \frac{V}{8\pi^2} \sum_k \frac{f(k) \Delta k}{\varepsilon^3} \approx \frac{V}{4\pi^2} \int \frac{f(k) \Delta k}{\varepsilon^3} \]

- number density of states \(n = \frac{N}{V} = \frac{1}{V} \int \frac{\Delta k}{4\pi^2} f(k) \)

- for isotropic system, i.e. all directions are equivalent (as the free electron case) \(\Delta k = 4\pi^2 \Delta k \)

- We can evaluate any quantity

 - total energy \(\mu = \frac{E}{V} = \frac{1}{V} \int \frac{d\varepsilon}{4\pi^2} f(k) \varepsilon \)

 - at zero temperature \(E = \frac{\hbar^2 k_F^2}{2m} \int_0^{\frac{4\pi^2}{3\pi^2}} \frac{d\varepsilon}{4\pi^2} = \frac{1}{10\pi^2} \frac{\hbar^2 k_F^2}{2m} \)

 \[E = \frac{1}{5\pi^2} \mu \]

- Average energy per electron

 - use \(N \frac{k_F^3}{3\pi^2} \) to get

 \[\frac{E}{N} = \frac{3}{5} \mu \]
Compressibility of electron gas

- Pressure exerted on electron gas: \(P = \left(\frac{\partial E}{\partial V} \right)_N \)
 - Energy of the electron gas \(E = \frac{3}{5} T \mu \) where \(\mu = \frac{3}{2} \hbar^2 k_F^2 / 2m \)
 - Fermi wavevector \(k_F = \frac{\sqrt{\frac{2m}{\hbar^2} E}}{\frac{2\pi}{\sqrt{2}} N^{3/2}} \Rightarrow k_F^2 = \left(\frac{3\pi^2 N}{2} \right)^{2/3} V^{-2/3} \)
 - And so \(E = \left(\frac{3}{5} \hbar^2 N^{3/2} V^{-2/3} \right)^{2/3} \)
 - So pressure \(P = \left(\frac{\partial E}{\partial V} \right)_N = \frac{2}{3} \frac{E}{V} \)
- Bulk modulus: \(B = -\frac{V}{E} \left(\frac{\partial P}{\partial V} \right)_N \)
 - But \(P = \text{const.} V^{-1} \Rightarrow \frac{\partial P}{\partial V} = (5/3) \frac{P}{V} \)
 - So bulk modulus \(B = \frac{10}{9} \frac{E}{V} = \left(\frac{6.13}{N^3 \hbar^2} \right)^3 \times 10^4 \text{ dynes/cm}^2 \)

Synopsis of the free electron Fermi-Dirac distribution

- The FD distribution for free electrons depends only on energy
 - The energy is isotropic with \(\epsilon(k) = \hbar^2 k^2 / 2m \)
 - Fermi function \(f(k) = f(\epsilon(k)) = f(\epsilon) = \frac{1}{e^{(\epsilon - \mu)/k_B T} + 1} \)
- The distribution is the probability for a energy level to be occupied
 - for \(T \to 0 \) \(f(\epsilon) = 1 \) for \(\epsilon < \epsilon_F \)
 - \(f(\epsilon) = 0 \) for \(\epsilon > \epsilon_F \)
 - for \(T \to 0 \) the chemical potential is the Fermi energy: \(\mu = \epsilon_F \) (but even at room temperature \(\mu \approx \epsilon_F \))

Application of the Fermi-Dirac distribution

- The number of electrons is determined by summing up the distribution
 \[n = \int \frac{dk}{4\pi^2} f(\epsilon) \]
 - but for isotropic distribution (free electrons) \(\int \frac{dk}{4\pi^2} f(\epsilon) = \int \frac{4\pi k^2}{4\pi^2} f(\epsilon) dk = \frac{1}{2\pi^2} \int k^2 f(\epsilon) dk \)
 - Use the free electron energy
 \[\epsilon = \frac{\hbar^2 k^2}{2m} \Rightarrow k^2 = \frac{2me\epsilon}{\hbar^2} \Rightarrow 2dkd\epsilon = \frac{2m}{\hbar^2} d\epsilon \Rightarrow dk = \frac{m}{k \hbar^2} d\epsilon \Rightarrow \]
 \[n = \frac{1}{2\pi^2} \int \frac{2me\epsilon}{\hbar^2} \frac{\hbar^2}{2me} f(\epsilon) d\epsilon \]
- Define the free electron density of states \(g(\epsilon) = \frac{m}{\hbar^2 \pi^2} \sqrt{\frac{2me}{\hbar}} \)
 - Number of electrons \(n = \int g(\epsilon) f(\epsilon) d\epsilon \)
 - Total energy density of electrons \(E_F = \int \epsilon g(\epsilon) f(\epsilon) d\epsilon \)

Thermal capacitance of free electron gas

- Energy change per change in temperature \(c_v = \left(\frac{\partial u}{\partial T} \right)_n \)
 - We approximate \(c_v = \frac{\Delta u}{\Delta T} \)
 - The number of electrons that change their energy is approximately \(g(\epsilon_F) k_F T \)
 - And their energy change is approximately \(\sim k_F T \)
 - So for an order of magnitude estimate \(\Delta u \sim g(\epsilon_F) (k_F T)^2 \)
- Our estimate for the thermal capacitance \(c_v = \left(\frac{\Delta u}{\Delta T} \right)_n \)
 - The correct value is \(c_v = \frac{\pi^2}{2} n k_F T / \epsilon_F \)
Thermal capacitance of free electron gas

- Classical thermal capacitance
 \[c_v = \frac{3}{2} nk_S \]

- Quantum thermal capacitance
 \[c_v = \frac{\pi^2}{2} nk_S k_b T / \varepsilon_F \]

 - a linear dependence on temperature
 - in reality there is also the ionic contribution, so
 \[c_v = \gamma_d T + \gamma_{ion} T^3 \]

 \[\gamma_d = 0.169 Z \frac{r_s^2}{a_0} \times 10^{-4} \text{cal} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \]

Other quantities in the Sommerfeld theory

- Mean free path \(l = v_F \tau \) or \(l = \left(\frac{r_s}{a_0} \right)^2 \times 92 \times 10^{-6} \text{Å} \)
 - with typical values of \(-100 \text{Å}\)
 - electrons do not scatter on the ions!

- Thermal conductivity
 \[\kappa = \frac{1}{3} n v_F^2 c_v \]
 - using \(\frac{1}{2} m v_F^2 = \varepsilon_F \)
 \[c_v = \frac{\pi^2}{2} nk_S k_b T / \varepsilon_F \]
 - we find \(\kappa = \frac{\pi^2}{3} nk_b \frac{k_F^2}{m} T \)

- Lorentz number
 \[\frac{\kappa}{\sigma T} = \frac{\pi^2}{3} \frac{nk_b^2}{m} T \]
 \[\frac{\kappa}{\sigma T} = \frac{1}{3} \left(\frac{k_b}{e} \right)^2 = 2.44 \times 10^{-4} \text{Woka/K}^2 \]

Summary

- Classical (Drude) theory of metals
 - electrons scatter with relaxation time \(\tau \)
 - Classical statistical distribution of velocities
 - Quantities that include the velocity or \(c_v \) are not accurate:
 - velocities are underestimated by an order of magnitude
 - thermal capacity is overestimated by 2 orders of magnitude

- Sommerfeld theory of metals
 - Pauli exclusion principle, velocities follow a Fermi-Dirac distribution
 - Definition of Fermi quantities: energy, velocity etc of the last occupied state
 - Quantities with velocity and \(c_v \) are now accurate
 - velocity to be used is the Fermi velocity
 - only the electrons close to the Fermi energy can be thermally excited