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lonic motion

Outline

e (Classical theory of the harmonic crystal
— spectrum of the vibrational modes
— normal modes and phonons

* Quantum theory
— quantization of vibrational modes
— thermal capacitance

Assumptions

e Average position of ions is their Bravais lattice site
— no diffusion, defects, etc are allowed

*  Motion around the equilibrium is much smaller than the ionic spacing
— assume a harmonic approximation (Hook’s law)

e Adiabatic approximation
— electrons move fast enough so they are always at their ground state
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*  We define f(R)" o ®
— Bravais lattice site R
— ion position r(R)

— iondisplacement U(R)=r(R)-R




Total energy

For ions fixed at equilibrium positions
. pot 1 r
— potential energy U™ = 72¢(R -R")
2 RR’
— kineticenergy U'"=0

— total energy H=U™

For ions moving around their equilibrium

— potential energy U™ :%Z¢(T(R)—I’(R')):%Z¢(R—R'+U(R)—U(R'))

Taylor expansion in 1D
/(x)

* General case of potential energy in 1D
— potential energy U (X)

— potential minima: points of equilibrium
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— we can expand around an equilibrium point
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e Close to the equilibrium point X=a
restoring force:
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— Kineticenergy k" =Zp(R)2/2M U(x)=U(a)+ 2U (a)(x-a)
R * Harmonic oscillator du (X)
— totalenergy H=UP'+Ukn 1 du F=- dx =—Kx
U(x)=U0+EK(x—a)2 K= vl
Harmonic approximation in 3D Specific heat of a classical crystal
the law of Dulong and Petit
e Motion around equilibrium is small
— Taylor expansion around equilibrium e From classical statistics the average energy density is
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e And the specific heat c, =V67T=3nk3 law of Dulong and Petit
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Specific heat

Classical result for insulators experimental result

(Dulong and Petit law) cyfioules/moleK)
c, =3nk,
0}
In reality

— itreaches the classical result at high T Dulong and Petit law.

— itgoestozeroatlowT
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« formetals C, =T +AT
« forinsulators C, = AT?
So we cannot use classical theory! 10 specific heat of argon,

krypton and xenon

But before we consider the quantum case

— which are the allowed modes?

— what is the number of modes?

1D monoatomic lattice: normal modes

Assume 1D chain with lattice spacing a
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Assume only nearest neighbor interactions
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Equation of motion for ion j
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Mu(ja) = K[u([j +1Ja) +u([j ~1Ja) —2u(ja)]

But what about ions at the boundaries?

Boundary conditions

Assume periodic (Born-von Karman) boundary conditions  u(Na) = u(0)
— they are equivalent to assuming a ring of ions

Assume harmonic solution  u(x,t) =ec €®0  or  u(ja,t) =oc g’
— 5o the boundary condition g =1
2w
— thus =kNa=n2r =k=n— n=1,2,3,..N
Na
From N ions we get N modes
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Dispersion relation

Equation of motion ~ MU(ja) = K[U([j +1]a) +u([j-1]a) - ZU(ja)]

i(kja—at)

— assume for solution u(ja,t)=cce (the real part or imaginary part )

Substitute in equation
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— linear dispersionat kK >0 @=a2a ﬁ‘k‘

— flatdispersionat k >+7/a w—2vK/M




1D acoustic oscillations
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1D lattice with a basis

¢ Two ions of mass M in each period a
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— two spring constants K and G
— two separation distances

¢ Now we have two branches of states
— 2N ions give us 2N modes
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* The lower branch is the acoustic
— always present
e The upper branch is the optical
— enabled by having 2 ions in unit cell
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1D acoustic and optical branches

At k = 0 (zone center)

— acoustic branch: all ions move together

(k) = JKG[2M (K + G)Jka
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— optical branch: ions move in pairs

o(k) = 1/2(K+G)/M
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At k = 7/a (zone edge)
— acoustic branch: soft springs active

o(k) = «/2G ™
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— Optical branch: stiff springs active

o(k) = «/2K/M
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3D monoatomic lattice

e We can generalize equations to 3D

— the lattice symmetry determines the available k-points and their symmetries

— reciprocal lattice - Brillouin zone
e We have 1 longitudinal and 2 transve

fec lattice
(real space configuration of atoms)
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fcc brillouin zone
(reciprocal space configuration of k-points)
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phonon dispersion relations for lead (fcc)




3D lattice with basis

e If we have p atoms in the basis

— 1 acoustic branch with 1 longitudinal and 2 transverse modes
— p-1 optical branches with p-1 longitudinal and 2(p-1) transverse modes

¢ 3N modes in total
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Thermal energy in quantum theory

The modes are described by wavevector k and branch s

— quantized energies - phonons, with energy per mode

& = (N + )Mo, (K)

— N, is the number of phonons with kand s

Total energy ho, (k)

s (K)kgT _

()= eq+ZWm)(k)+Z

— where (e”kBT —1)7l corresponds to the Bose-Einstein distribution

Specific heat

c:lﬁzl o haoy(K)

YTV OT vV &aT etk

— to evaluate this we need the number of possible states

High temperature specific heat

e Atvery high temperatures hao, (K) << kgT
1 N kgT
e)‘m;s(k)/kBT -1 ha)s (k)
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— which is just the Dulong and Petit law
— at very high temperatures, all phonon modes are activated with high occupation numbers

e Atvery low temperatures hao,(K) >> KT
— assume only the linear part of the acoustic branch @ (k) U (k)k
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Debye and Einstein models




Summary

e Classical (Drude) theory of metals
— electrons scatter with relaxation time ©
— Classical statistical distribution of velocities
— Quantities that include the velocity or ¢, are not accurate:
* velocities are underestimated by an order of magnitude
* thermal capacity is overestimated by 2 orders of magnitude

e Sommerfeld theory of metals
— Pauli exclusion principle, velocities follow a Fermi-Dirac distribution
— Definition of Fermi quantities: energy, velocity etc of the last occupied state
— Quantities with velocity and ¢, are now accurate

¢ velocity to be used is the Fermi velocity
¢ only the electrons close to the Fermi energy can be thermally excited




